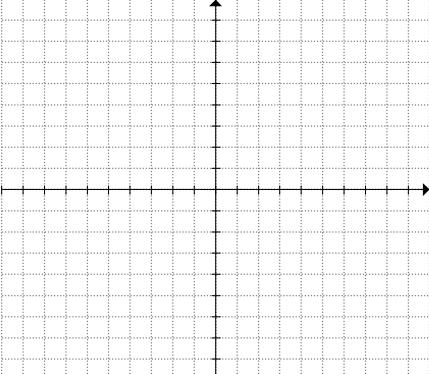
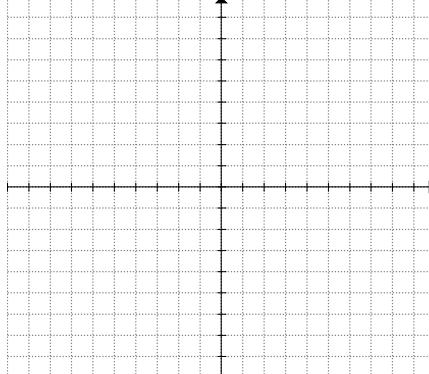
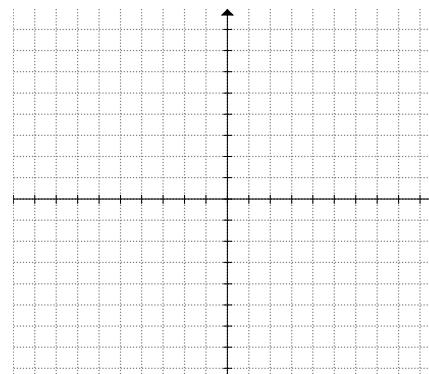


Name: _____




Date: _____

Math 12 Honours: HW Section 2.1 Graphing and Solving Basic Functions

- When looking at a radical function, how do you tell which way (LEFT/RIGHT/UP/DOWN) the graph opens towards? Explain: $y = a\sqrt{b + cx}$
- How do you distinguish between having NO solutions vs having an Extraneous root? Explain: $a\sqrt{b + cx} = mx + p$
- What is the difference between a function and a relation? Explain:
- Given each of the following functions or relations, and then indicate the domain and range:

<p>a) $y = 2(x-4)^2 - 12$</p>	<p>b) $(x+1)^2 + (y-1)^2 = 25$</p>	<p>c) $y = -0.5(x-1)(x+3)(2x-5)$</p>
<p>Domain: _____</p> <p>Range: _____</p>	<p>Domain: _____</p> <p>Range: _____</p>	<p>Domain: _____</p> <p>Range: _____</p>

<p>d) $y = -\sqrt{3x+1}$</p>	<p>e) $x^2 + 8x + y^2 - 2y - 1 = 9$</p>	<p>f) $y = (x-2)^3(x+1)^2$</p>
<p>Domain: _____</p> <p>Range: _____</p>	<p>Domain: _____</p> <p>Range: _____</p>	<p>Domain: _____</p> <p>Range: _____</p>

5. Graph the following functions/relations. Indicate the domain, range and the equation of all the asymptotes:

<p>a) $y = -2(0.5)^x + 3$</p> <p>Domain: _____ Range: _____</p> <p>Asymptotes</p>	<p>b) $y = \log(x-2) + 1$</p> <p>Domain: _____ Range: _____</p> <p>Asymptotes</p>	<p>c) $x^2 - (y+1)^2 = 9$</p> <p>Domain: _____ Range: _____</p> <p>Asymptotes</p>
<p>d) $y = 2(3^x) - 4$</p> <p>Domain: _____ Range: _____</p> <p>Asymptotes</p>	<p>e) $x^2 + 6x - y^2 + 2x = 0$</p> <p>Domain: _____ Range: _____</p> <p>Asymptotes</p>	<p>f) $y = 2 \log(7-2x)$</p> <p>Domain: _____ Range: _____</p> <p>Asymptotes</p>
<p>g) $y = 2^{x+1}$</p> <p>Domain: _____ Range: _____</p> <p>y-intercept</p>	<p>h) $y = -2(3)^{-x} + 1$</p> <p>Domain: _____ Range: _____</p> <p>y-intercept</p>	<p>i) $y = -5(1.5)^{x-3}$</p> <p>Domain: _____ Range: _____</p> <p>y-intercept</p>

6. Given the functions $f(x) = 2x^2 + 6x + 11$ and $g(x) = 0.5(x-3)(2x+4)(8-3x)$, find the equation for each of the following:

i) $f(8x)$

ii) $g(2x-1)$

iii) $f(2+z^2)-10$

iv) What is the domain of $\frac{1}{g(x+1)}$?

vi) What is the range of $\frac{1}{f(x+2)}$?

7. Solve for "k": $2(4)^x = k(0.25)^{x+2}$

8. What is the center and radius of the following circle: $x^2 - 4x + y^2 - 6x + 2 = 0$

9. What are the x-intercept(s) of the function: $y = x^3 - 6x^2 + 12x - 20$

10. If the smallest value of "y" satisfying the equation $y = 3x^2 + 6x + k$ is 4, find the value of "k"?

11. For what values of "k" is there no solution? $(-\frac{2}{7})2^{3x+4} + 4 = k$

12. Solve for "c" in terms of "a" and "b" given that: $\sqrt{a + \frac{b}{c}} = a\sqrt{\frac{b}{c}}$

13. Let $f(x) = a^2x^2 + 5ax + 3$ and $f(2) = 2$. Find all possible values of the constant "a"

14. A function "f" satisfies the equation $f(x) + f(x+3) = 2x+5$ for all values of "x". If $f(8) + f(2) = 12$, then determine the value of $f(5)$. [CSMC]

15. For any real number "x", $[x]$ denotes the largest integer less than or equal to "x". For example $[4.1] = 4$ and $[-3.8] = -4$. That is, $[x]$ is the integer that satisfies the inequality $[x] \leq x < [x] + 1$.

- The equation $x^2 = 3[x] + 1$ has two solutions. One solution is $x = \sqrt{7}$. The second solution is of the form $x = \sqrt{a}$ for some positive integer "a". Determine the value of "a".
- For each positive integer "n", determine all possible integer values of the expression $x^2 - 3[x]$, where 'x' is a real number with $[x] = n$
- For each integer "k" with $k \geq 0$, determine all real numbers "x" for which $x^2 = 3[x] + (k^2 - 1)$